JOM 23810

Das Reaktionsverhalten von Cp_2MoCl_2 gegenüber WF_6 und $NOBF_4$ – Struktur von $[Cp_2MoCl_2][BF_4]$

Thomas M. Klapötke und Axel Schulz

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Sekr. C 2, Straße des 17. Juni 135, D-10623 Berlin (Deutschland)

T. Stanley Cameron und P.K. Bakshi

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada) (Eingegangen den 14. April 1993)

Abstract

The oxidation of CpMoCl₂ (1) with WF₆ or NOBF₄ to yield cationic molybdenum(V) species was estimated on the basis of a simple Born-Haber cycle to be thermodynamically feasible. The reaction of Cp₂MoCl₂ (1) with WF₆ carried out under rigorously anhydrous conditions in liquid SO₂ in a Kel-F vessel produced pure, paramagnetic [Cp₂MoCl₂][WF₆] (2), which was characterized on the basis of material balances, elemental analysis, infrared and mass spectral data. The tetrafluoroborate salt, [Cp₂MoCl₂][BF₄] (3), was formed by reaction of 1 with NOBF₄ in SO₂ solution, and was identified by elemental analysis and infrared data. Compound 3 crystallizes in the orthorhombic system: space group, $Pmn2_1$ (No. 31); a = 9.330(2), b = 6.882(1), c = 9.9585(9) Å; Z = 2; R(F) = 0.0286.

Zusammenfassung

Auf der Basis einfacher Born-Haber-Cyclen konnte die Oxidation von Cp_2MoCl_2 (1) mit WF₆ bzw. NOBF₄ zu Molybdänocenium(V)-Kationen als thermodynamisch erlaubt abgeschätzt werden. Unter absolut wasserfreien Bedingungen führt die Reaktion von Cp_2MoCl_2 (1) mit WF₆ in flüssigem SO₂ in einem Kel-F-Reaktionsgefäß zur Synthese von reinem, paramagnetischen [Cp_2MoCl_2 [[WF₆] (2), das durch Massenbilanz, Elementaranalyse, Infrarot- und Massenspektroskopie charakterisiert werden konnte. Das Tetrafluoroborat-Salz [Cp_2MoCl_2 [[BF₄] (3) kann durch die Umsetzung von 1 mit NOBF₄ in SO₂-Lösung dargestellt werden; die Identifizierung erfolgte mittels Elementaranalyse und Infrarotspektroskopie. Verbindung 3 kristallisiert im orthorhombischen System: Raumgruppe, *Pmn*2₁ (Nr. 31); a = 9.330(2), b = 6.882(1), c = 9.9585(9) Å; Z = 2; R(F) = 0.0286.

1. Einleitung

Seit einiger Zeit interessieren wir uns für die präparative Synthese hochoxidierter Metallocendichlorid-Komplexe des Typs $[Cp_2MCl_2]^{n+}[LF]_n^-$ (L = Lewis-Säure, z.B.: BF₃, AsF₅, SbF₅) [1]. Im Rahmen unserer bisherigen Arbeiten gelang die Darstellung und strukturelle Charakterisierung der folgenden Komplexsalze: n = 1: M = V, Nb; L = AsF₅, SbF₅; n =2: M = Mo, W; L = AsF₅, SbF₅ [1-4]. MO-Berechnungen gezeigt werden konnte, daß das HOMO (a₁) in Cp₂MoCl₂ (1) in seiner energetischen Lage etwa dem SOMO (a₁) von Cp₂VCl₂ entspricht [5,6], sollten bereits relativ milde Oxidationsmittel wie NOBF₄ (NO⁺+ e⁻ \rightarrow NO) bzw. WF₆ (WF₆ + e⁻ \rightarrow WF₆⁻) in der Lage sein, Molybdänocendichlorid in das Monokation (d¹) zu überführen. Tatsächlich konnten M.L.H. Green *et al.* bereits vor längerer Zeit die Existenz des [Cp₂MoCl₂]⁺-Kations im Tetrafluoroborat-Salz eindeutig nachweisen [7,8], allerdings ist diese Spezies strukturell nur unzureichend charakterisiert worden (vergl. Ref. 6 in Lit. 9).

Da mit Hilfe von Photoelektronenspektren und

Correspondence to: Priv.-Doz. Dr. T.M. Klapötke or Dr. T.S. Cameron.

$$Cp_{2}MoCl_{2}(s) + WF_{6}(l) \longrightarrow [Cp_{2}MoCl_{2}][WF_{6}](s)$$

$$\downarrow^{a} \qquad b \downarrow$$

$$Cp_{2}MoCl_{2}(g) \qquad WF_{6}(g)$$

$$\downarrow^{c} \qquad d \downarrow$$

$$[Cp_{2}MoCl_{2}]^{+}(g)[WF_{6}]^{-}(g)$$

Schema 1. Born-Haber-Kreisprozeß zur Abschätzung der Reaktionsenthalpie einer gemäß Gl. (1) geführten Reaktion. (a) $\Delta H_{Sub}(1)$ wurde gleichgesetzt mit $\Delta H_{Sub}(Cp_2ZrCl_2) = 23$ kcal mol⁻¹ [1]. (b) $\Delta H_{Verd}(WF_6) = 6$ kcal mol⁻¹ [11]. (c) $I_P(1)$ abgeschätzt zu: $I_P(1) \approx I_P(Mo) - 1$ eV = 6.099 eV = 141 kcal mol⁻¹ [5]. (d) $- E_A(WF_6) = -85$ kcal mol⁻¹ [12]. (e) $U_L(2)$ abgeschätzt unter Anwendung der linearen Beziehung: U_L (kcal mol⁻¹) = 556.3 V_M (Å³)^{-0.33} + 26.3 [13]; mit $V_M(WF_6) = 109$ Å³ [1] und $V_M([Cp_2MoCl_2]^+) = 339$ Å³ [9]; daraus ergibt sich: $V_M(1) = 339$ Å³ und $U_i(2) = 106$ kcal mol⁻¹.

Nachdem uns kürzlich die Darstellung eines $[Cp_2WCl_2]^+$ -Kations im Salz $[Cp_2WCl_2]_2[W_4F_{18}]$ und dessen Strukturbestimmung durch Röntgenbeugung gelungen ist [10], war es Ziel der vorliegenden Arbeit, ein $[WF_6]^-$ -Salz des Molybdänocen(V)dichlorids zu synthetisierten. Da aufgrund partieller Hydrolyse von $[Cp_2MoCl_2][WF_6]$ (2) in Glasgefäßen $[Cp_2MoCl_2][BF_4]$ (3) gebildet wird, veranlaßte uns dieser Befund zu einer erneuten Untersuchung der Synthese und Struktureigenschaften der Verbindung 3.

2. Ergebnisse und Diskussion

2.1. Thermodynamische Aspekte

Auf der Basis einfacher Born-Haber-Cyclen konnten die Reaktionen gemäß Gl. (1) und (2) als thermodynamisch erlaubt mit $\Delta H^{\circ}(1) = -21$ kcal mol⁻¹ bzw. $\Delta H^{\circ}(2) = -11 \text{ kcal mol}^{-1} \text{ abgeschätzt werden (Schema 1 und 2).}$

$$Cp_{2}MoCl_{2}(s) + WF_{6}(l) \xrightarrow{\Delta H^{\circ}(1)} 1$$

$$[Cp_{2}MoCl_{2}][WF_{6}](s) (1)$$

$$2$$

$$1 (s) + [NO][BF_{4}](s) \xrightarrow{\Delta H^{\circ}(2)} [Cp_{2}MoCl_{2}][BF_{4}](s) + NO(g) (2)$$

3

In Einklang mit den thermodynamischen Abschätzungen reagiert Molybdänocendichlorid (1) in SO₂-Lösung bei Raumtemperatur mit jeweils einem Äquivalent WF₆ bzw. [NO][BF₄] glatt unter Ausbildung der kationischen Komplexe 2 und 3 (Gln. (1) und (2)). Für beide Verbindungen konnte qualitativ eindeutig das Vorliegen paramagnetischer Spezies nachgewiesen werden. Die chemische Identifizierung erfolgte mittels Massenbilanz (isolierte Ausbeute vor Umkristallisation), Elementaranalyse und Infrarot- sowie im Fall von 2 zusätzlich durch Massenspektroskopie (Tabelle 1, Exp. Teil). Während für 3 beide IR-aktiven Absorptionen des Anions beobachtet werden konnten, zeigt 2 im Anionen-Teil des IR-Spektrums nur eine sehr intensive Bande, da die zweite IR-aktive Schwingung $(\nu_4$ -WF₆) unterhalb von 250 cm⁻¹ zu erwarten ist [16]. Das gemäß Gleichung 2 gebildete Stickstoffmonoxid konnte durch Gas-IR-Spektroskopie ebenfalls nachgewiesen werden.

Da das zweite Ionisierungspotential von 1 erwartungsgemäß wesentlich höher als das erste ist [10], und die Oxidation von 1 mittels Nitrosyltetrafluoroborat zu 3 (Gl. (2)) lediglich grob zu mit *ca*. 11 kcal mol⁻¹ begünstigt abgeschätzt werden konnte, ist es nicht überraschend, daß die Umsetzung von 1 auch mit

Schema 2. Born-Haber-Kreisprozeß zur Abschätzung der Reaktionsenthalpie einer gemäß Gl. (2) geführten Reaktion. (a) $\Delta H_{\text{Sub.}}(1) = 23$ kcal mol⁻¹ (s. Schema 1). (b) $U_{\text{L}}([\text{NO}][\text{BF}_4]) = 151$ kcal mol⁻¹ [1]. (c) $I_{\text{P}}(1) = 141$ kcal mol⁻¹ (s. Schema 1). (d) $U_{\text{L}}(3) = 109$ kcal mol⁻¹; abgeschätzt mit $V_{\text{M}}([\text{BF}_4]^-) = 73$ Å³ [14] (s. Schema 1). (e) $I_{\text{P}}(\text{NO}) = 215$ kcal mol⁻¹ [15].

TABELLE 1. Analytische Daten der Komplexe 2 und 3

	2	3
Farbe	Rotbraun	Rotbraun
Isolierte Ausbeute, g (%)	0.594 (96)	0.380 (98)
M_{ber} (g mol ⁻¹)	594.88	383.84
C, gef. (ber.)	20.07 (20.17)	30.88 (31.20)
H, gef. (ber.)	1.79 (1.68)	2.43 (2.62)
IR (KBr-Preßling, 20	$^{\circ}$ C, cm ⁻¹)	
ν-CH, Cp	3118 m	3118 s
ω-CC, Cp	1438 s, 1429 m	1442 s, 1430 s
δ-СН, Ср	1030 m, 1003 m, 990 m	_ ^a
γ-СН, Ср	865 m	860 vs
v-Mo-Cl	290 s	285 s
ν_3 -WF ₆	595 s, br	
ν_3 -BF ₄		1150-950 vs, br
ν_4 -BF ₄	. · · ·	519 m

^a Verdeckt durch ν_3 -BF₄.

einem großen Überschuß an [NO][BF₄] nicht zur Ausbildung des d°-konfigurierten Dikations führt (Gl. (3)). Wie wir früher gezeigt haben, müssen zur Synthese von $[Cp_2MoCl_2]^{2+}$ -Salzen stärkere Oxidationsmittel wie z.B. AsF₅ eingesetzt werden [1].

 $1 + 2[NO][BF_4] \longrightarrow 3 + NO + [NO][BF_4]$ (3)

Da 2 im Gegensatz zu 1 bei relative rascher (12-36 h) Umkristallisation aus SO_2 nicht in Form wohlausgebildeter Kristalle anfällt, haben wir eine bei Raumtemperatur nahezu gesättigte Lösung von 2 in SO₂ durch langsame Abdampfen des Lösungsmittels über einen Zeitraum von 1-2 Wochen eingeengt. Hierbei fiel 2 zu über 90% wieder in Form einer stark verwachsenen Kristallmasse an. Auffällig war jedoch, daß darüberhinaus in relativ geringer Ausbeute (< 10%) zusätzlich rotbraune, Obelisk-förmige Kristalle isoliert werden konnten, die überraschenderweise elementaranalytisch und IR-spektroskopisch eindeutig als das Tetrafluoroborat 3 identifiziert werden konnten. Um zu klären, ob die B-haltige Verunreinigung aus dem verwendeten Glas (Duran[®] 8330; 12–13% B_2O_3 , > 80% SiO₂) oder aber aus Verunreinigungen im eingesetzten Edukt 1, welches gemäß den Gl. (4) und (5) dargestellt wurde, stammt, wurden zunächst das Cp2MoH2 als Synthesevorstufe von 1 durch doppelte Sublimation (Gl. (4a)) und dann das daraus erhaltene 1 durch Umkristallisation aus SO_2 gereinigt (Gl. (5a)).

$$8 \operatorname{NaCp} + 3 \operatorname{NaBH}_4 + 4 \operatorname{MoCl}_5 \longrightarrow$$

$$4 \operatorname{Cp}_{2}\operatorname{MoH}_{2} + 3 \operatorname{NaBCl}_{4} + 8 \operatorname{NaCl} + 2 \operatorname{H}_{2}$$
(4)

$$Cp_2MoH_2 \xrightarrow{\text{Subministron}} Cp_2MoH_2$$
 (4a)

$$Cp_2MoH_2 + 2 CHCl_3 \longrightarrow 1 + 2 CH_2Cl_2$$
 (5)

$$1 \xrightarrow{\text{Umkristallisation(SO_2)}} 1 \xrightarrow{(5a)}$$

Bei der Verwendung dieses somit erhaltenen elementaranalytisch und IR-spektroskopisch reinen 1 zur Synthese von 2 konnte nach *ca*. 10-tägiger Umkristallisation von 2 aus SO₂ in einer Duran[®]-Glas-Apparatur ebenfalls wieder die Verbindung 3 mit einem Anteil von *ca*. 5% nachgewiesen werden.

Im darauffolgenden Experiment synthetisierten wir 2 gemäß Gl. (1) in einer Kel-F[®]-Apparatur ([CF₂-CFCl]_n-Kunststoff) und ließen die Verbindung ebenfalls aus SO₂ über einen Zeitraum von zwei Wochen auskristallisieren. In der hierbei erhaltenen rotbraunen Kristallmasse, die als reines 2 identifiziert wurde, konnte weder durch Elementaranalyse noch durch IR-Spektroskopie die Anwesenheit von Verbindung 3 nachgewiesen werden. Dieser Befund weist deutlich darauf hin, daß das bei der langsamen Umkristallisation von 2 aus SO₂ in einer Duran[®]-Glas-Apparatur zu bis zu 5% gebildete 3 durch teilweise Hydrolyse (bedingt durch eindiffundierte Feuchtigkeit) des Hexafluorowolframates unter HF-Bildung, die zum Angriff des Borosilikatglases führte, gebildet wurde.

Die hohe Kristallisationstendenz von Verbindung 3 veranlaßte uns allerdings, diesen Komplex gemäß Gl. (2) quantitativ-darzustellen. Die Umkristallisation aus SO_2 führte bei Raumtemperatur innerhalb weniger Tage zur Ausbildung gutgewachsener, kleiner, Obeliskförmiger Einkristalle, die zu einer röntgenstrukturanalytischen Charakterisierung geeignet waren.

2.3. Strukturelle Aspekte

Die Struktur der Verbindung 3 ist gelöst und erfolgreich verfeinert worden. Abbildung 1 zeigt die PLUTO-Darstellung einer $[Cp_2MoCl_2][BF_4]$ -Einheit in 2. Die Ionen im Kristalls formen eine orthorhombische Elementarzelle mit den Gitterkonstanten a = 9.330(2), b = 6.882(1) und c = 9.5985(9) Å sowie Z = 2Formeleinheiten. Da die Raumgruppe $Pmn2_1$ (Nr. 31) zentrosymmetrisch ist, sind die Kristalle entweder racemisch oder die Moleküle enthalten kein asym-

Abb. 1. PLUTO-Darstellung einer [Cp2MoCl2][BF4]-Einheit in 3.

TABELLE 2. Atomparameter für $[Cp_2MoCl_2][BF_4]$ (3) mit Standardabweichungen

Atom	x	у	z
Mol	0.0000(0)	0.3169(1)	0.4244(0)
Cl1	0.1772(1)	0.5697(1)	0.4244(6)
F1	0.5000(0)	0.2278(15)	0.5385(13)
F2	0.5000(0)	0.2268(17)	0.3025(12)
F3	0.3823(3)	-0.0026(6)	0.4295(12)
C1	0.0845(11)	0.0845(11)	0.5790(10)
C2	0.1196(9)	0.2650(10)	0.6307(9)
C3	0.0000(0)	0.3725(13)	0.6653(13)
C4	0.0000(0)	0.3391(12)	0.1840(12)
C5	0.1216(6)	0.2278(8)	0.2168(9)
C6	0.0704(10)	0.0616(7)	0.2767(8)
B1	0.5000(0)	0.1201(11)	0.4231(19)

metrisches Zentrum. Die Atomparameter sind in Tabelle 2, die Bindungsabstände und Bindungswinkel in Tabelle 3 zusammengestellt.

TABELLE 3. Bindungslängen (Å) und Bindungswinkel (°) von 3

Abstände			
Mo(1)Cl(1)	2.400(3)	Mo(1)C(6)'	2.352(8)
Mo(1)-Cl(1)'	2.400(3)	F(1)B(1)	1.333(11)
Mo(1)-C(1)	2.320(10)	F(2)-B(1)	1.371(12)
Mo(1)-C(1)'	2.320(10)	F(3) - B(1)	1.386(11)
Mo(1)C(2)	2.301(8)	C(1)-C(1)'	1.577(14)
Mo(1)-C(2)'	2.301(8)	C(1) - C(2)	1.377(13)
Mo(1)-C(3)	2.344(7)	C(2)–C(3)	1.379(11)
Mo(1)C(4)	2.312(7)	C(4) - C(5)	1.404(9)
Mo(1)-C(5)	2.374(7)	C(4)-C(5)'	1.404(9)
Mo(1)-C(5)'	2.374(7)	C(5) - C(6)	1.367(10)
Mo(1)-C(6)	2.352(8)	C(6)-C(6)'	1.314(11)
Winkel			
Cl(1)-Mo(1)-Cl(1)'	87.07(10)	C(3) - Mo(1) - C(5)	150.5(2)
Cl(1)-Mo(1)-C(1)	105.4(2)	C(3)-Mo(1)-C(6)	135.8(3)
Cl(1)-Mo(1)-C(1)'	137.2(2)	C(4)-Mo(1)-C(6)	56.5(2)
Cl(1)-Mo(1)-C(2)	77.2(2)	C(5)-Mo(1)-C(5)'	57.1(2)
Cl(1)-Mo(1)-C(2)'	116.5(2)	C(5)-Mo(1)-C(6)'	55.5(2)
Cl(1)-Mo(1)-C(3)	83.2(2)	Mo(1)-C(1)-C(1)'	70.1(5)
Cl(1)-Mo(1)-C(4)	87.3(2)	Mo(1)-C(1)-C(2)	71.9(5)
Cl(1)-Mo(1)-C(5)	81.8(2)	C(1)' - C(1) - C(2)	103.7(8)
Cl(1)-Mo(1)-C(5)'	121.1(2)	Mo(1)-C(2)-C(1)	73.4(5)
Cl(1)-Mo(1)-C(6)	110.4(2)	Mo(1)-C(2)-C(3)	74.4(5)
Cl(1)-Mo(1)-C(6)'	137.2(2)	C(1)-C(2)-C(3)	112.2(8)
C(1)~Mo(1)-C(2)'	60.5(3)	Mo(1)-C(3)-C(2)	71.0(5)
C(1)-Mo(1)-C(3)	58.8(3)	C(2)-C(3)-C(2)'	108.0(7)
C(1)-Mo(1)-C(4)	133.1(3)	Mo(1)-C(4)-C(5)	75.0(4)
C(1)-Mo(1)-C(5)	101.3(3)	C(5)-C(4)-C(5)'	107.7(6)
C(1)-Mo(1)-C(5')	121.4(3)	Mo(1)-C(5)-C(4)	70.2(4)
C(1)-Mo(1)-C(6)	77.0(3)	Mo(1)-C(5)-C(6)	72.3(4)
C(1)-Mo(1)-C(6)'	88.0(3)	C(4) - C(5) - C(6)	105.6(6)
C(2)-Mo(1)-C(2)'	58.0(3)	Mo(1)-C(6)-C(5)	74.1(4)
C(2)-Mo(1)-C(4)	150.4(3)	Mo(1)-C(6)-C(6)'	73.8(5)
C(2)-Mo(1)-C(5)	116.8(3)	C(5)-C(6)-C(6)'	110.5(7)
C(2)-Mo(1)-C(5)'	15.61(3)	F(1)-B(1)-F(2)	113.8(8)
C(2)-Mo(1)-C(6)	105.5(3)	F(1)-B(1)-F(3)	107.6(7)
C(2)-Mo(1)~C(6)'	122.6(3)	F(2)-B(1)-F(3)	111.3(7)
C(3)-Mo(1)-C(4)	166.8(2)	F(3)-B(1)-F(3)"	104.7(7)

Abb. 2. Ladungs-Bindungsabstands-Korrelation für $[Cp_2MoCl_2]^{n+}$ -Spezies ($0 \le n \le 2$).

In 3 treten keine signifikanten Kationen-Anionen-Wechselwirkungen auf. Das Mo-Atom ist von den beiden Cp-Ringen und den beiden Cl-Atomen verzerrt tetraedrisch umgeben, während das B-Atom durch die vier F-Atome nahezu tetraedrisch koordiniert ist. Die vier B-F-Abstände sind annähernd gleich, die Abweichungen liegen im Rahmen der Standardabweichungen. Die beiden Mo-Cl-Abstände sind mit 2.400(3) Å identisch, der Cl-Mo-Cl-Winkel beträgt 87.07(10)°. Die Ladung am Molybdänzentralatom läßt sich nicht unmittelbar aus der Struktur ableiten, jedoch kann man eine linearen Zusammenhang (Korrelationskoeffizient, R = 0.998) zwischen dem Mo-Cl-Abstand und der Ladung am Mo-Atom herstellen (Abb. 2). Sowohl der Cl-Mo-Cl-Winkel als auch der Mo-Cl-Abstand von drei passen sich in die Ladungs-Strukturparameterkorrelation gut ein; am Mo-Zentralatom kann somit eine positive Ladung geschrieben werden (Tabelle 4).

3. Experimenteller Teil

Eine ausführliche Beschreibung der angewandten Arbeitstechnik findet sich in der Literatur [17].

3.1. Darstellung von $[Cp_2MoCl_2][WF_6]$ (2)

In einem 20 ml-Kel-F-Reaktionsgefäß mit Edelstahl-Absperrventil werden auf eine gefrorene Lösung von 0.310 g (1.04 mmol) 1 in 10 ml SO₂ bei -196° C 0.343 g (1.15 mmol; entspricht 1.1 Äquivalente) WF₆

TABELLE 4. Mo-Cl-Bindungsabstände und Cl-Mo-Cl-Bindungswinkel für $[Cp_2MoCl_2]^{n+}$ -Spezies $(0 \le n \le 2)$

n	d _{exp.} (Mo-Cl) (Å)	d _{ber} (Mo-Cl) (Å)	Winkel (Cl-Mo-Cl) _{exp.} (°)
0	2.47 [9]	2.47	82.0
1	2.38 [Diese Arbeit]	2.38	87.9
2	2.29 [3]	2.29	100.9

TABELLE 5. Kristalldaten

Empirische Formel	$C_{10}H_{10}BF_4Cl_2Mo$
Molekulargewicht (g mol $^{-1}$)	383.84
Kristallfarbe, Struktur	Tief-rotbraun, Nadel
Kristallgröße	$0.15 \times 0.25 \times 0.45$
Kristallsystem	Orthorhombisch
Zahl der Reflektionen zur Best. d.	14 (54.2–58.6°)
Elementarzelle (20-Modus)	
ω-Scan-Peakbreite bei halber Höhe	0.22
Zell-Parameter (Å)	a = 0.9330(2), b = 6.882(1),
	c = 9.5985(9)
	$V = 616.3(3) \text{ Å}^3$
Raumgruppe	$Pmn2_1$ (Nr. 31)
Ζ	2
$D_{\rm ber.} ({\rm g}{\rm cm}^{-3})$	2.068
F ₀₀₀	347
μ (Mo-K _{α}) (cm ⁻¹)	15.01

(Air Products) aufkondensiert. Die Reaktionsmischung wird dann auf Raumtemperatur erwärmt und 2 h bei dieser Temperatur gerührt. Nach Abpumpen aller flüchtigen Komponenten und Trocknung i. Vak. werden 0.594 g 2 (96%) als Rohprodukt isoliert. Die Umkristallisation aus 10 ml SO₂ durch langsames Abkondensieren des Lösungsmittels bei Raumtemperatur über einen Zeitraum von 10 Tagen liefert analysenreines Produkt 2 in *ca.* 79%-iger Ausbeute (0.490 g).

Elementaranalyse, IR-Daten: s. Tabelle 1. MS (EI, 70 eV, 350°C) m/z (I_{rel}): 298 (40) $Cp_2MoCl_2^+$, 263 (48) Cp_2MoCl^+ , 260 (28) WF_4^+ , 257 (100) WF_2Cl^+ , 233 (44) $CpMoCl_2^+$, 222 (12) WF_2^+ , 198 (44) $CpMoCl^+$, 171 (12) MoF_2Cl^+ ; 65 (32) Cp.

3.2. Darstellung von $[Cp_2MoCl_2][BF_4]$ (3)

Zu einer Lösung von 0.300 g (1.01 mmol) 1 in 10 ml SO_2 wird in einem Zwei-Kugel-Kolben bei Raumtemperatur eine Lösung von 0.120 g (1.02 mmol) [NO][BF₄] in 5 ml SO_2 gegeben. Nach 12 h Rühren bei Raumtemperatur werden das Lösungsmittel und alle flüchtigen Komponenten abgepumpt und der verblei-

TABELLE 6.	Intensitätsmessungen
------------	----------------------

Rigaku AFC5R
Mo-K _{α} ($\lambda = 0.71069$ Å); 2.4 kW
18±1°C
ω-2Θ
$8.0^{\circ}/\min(in \omega)$
59.9°
1078
Lorentz-Polarisation, Absorption
(Trans Faktoren: 0.87–1.23)

TABELLE 7. Strukturlösung und Strukturverfeinerung

Strukturlösung	Direkte Methoden	
Verfeinerung	Full-matrix least-squares	
Minimierte Funktion	$w(F_{o} - F_{c})^{2}$	
w-Funktion (Gewichtung	$w = 0.6230/[\sigma^2(F) + 0.000801F^2]$	
der kleinsten Quadrate	-	
Anomale Dispersion	alle Nicht-Wasserstoff-Atome	
Reflexe mit $I > 3.00\sigma(I)$	874	
Zahl der Variablen	96	
$R; R_{w}$	0.0286; 0.0327	

bende rotbraune Feststoff i. Vak. getrocknet. Die Ausbeute an Rohprodukt beträgt 0.380 g (98%) 3. Zur Umkristallisation wird die Verbindung nochmals in 10 ml SO₂ gelöst, filtriert und innerhalb von 1–2 Tagen bei Raumtemperatur zur Trockene eingeengt. Die Verbindung 3 fällt jetzt als tief-rotbraune, relativ luftbeständige, kristalline Substanz in *ca*. 65%-iger Ausbeute (0.250 g) an.

Elementaranalyse, IR-Daten: s. Tabelle 1.

3.3. Röntgenstrukturanalyse

Eine tief-rotbraune Kristallnadel der Verbindung **3** wurde in eine Glas-Kapillare eingeschmolzen. Eine Zusammenstellung der Kristall-Daten findet sich in Tabelle 5, eine solche der Intensitätsmessungen in Tabelle 6. Die Daten für die Strukturlösung und die Verfeinerung finden sich in Tabelle 7 [18-22].

Weitere Einzelheiten zur Strukturbestimmung können beim FIZ, Gesellschaft für wissenschaftlichtechnische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57216, der Autoren und des Zeitschriftenzitates angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (KL 636/1-2), dem Fonds der Chemischen Industrie und dem Bundesminister für Bildung und Wissenschaft (Graduiertenkolleg "Synthese und Strukturaufklärung niedermolekularer Verbindungen", Stipendium [A.S.]) für die finanzielle Unterstützung dieser Arbeit.

Literatur

- 1 P. Gowik und T.M. Klapötke, J. Organomet. Chem., 398 (1990) 1.
- 2 P. Gowik, T. Klapötke und J. Pickardt, Organometallics, 8 (1989) 2953.
- 3 P. Gowik, T. Klapötke und P. White, Chem. Ber., 122 (1989) 1649.
- 4 F.H. Görlitz, P.K. Gowik, T.M. Klapötke, D. Wang, R. Meier und J. v. Welzen, J. Organomet. Chem., 408 (1991) 343.
- 5 J. Petersen, D.L. Lichtenberger, R.F. Fenske und L.F. Dahl, J. Am. Chem. Soc., 97 (1975) 6433.

- 6 P.M. Druce, B.M. Kingston, M.F. Lappert, T.R. Spalding und R.C. Srivastava, J. Chem. Soc. A, (1969) 2106.
- 7 R.L. Cooper und M.L.H. Green, J. Chem. Soc. A, (1967) 1155.
- 8 R.L. Cooper und M.L.H. Green, Z. Naturforsch., 19b (1964) 652.
- 9 J.C. Green, M.L.H. Green und C.K. Prout, J. Chem. Soc., Chem. Commun., (1972) 421.
- 10 T.S. Cameron, T.M. Klapötke, A. Schulz und J. Valkonen, J. Chem. Soc., Dalton Trans., (1993) 659.
- 11 J.C. Bailar, H.J. Emeleus, R. Nyholm und A.F. Trotman-Dickenson (Hrsg.), *Comprehensive Inorganic Chemistry*, Pergamon Press, Oxford, 1973.
- 12 J.E. Huheey, Anorganische Chemie, Walter de Gruyter, Berlin, New York, 1988.
- 13 T.J. Richardson, F.L. Tarzella und N. Bartlett, J. Am. Chem. Soc., 108 (1986) 4937; T.E. Mallouk, G.L. Rosenthal, G. Müller, R. Brusasco und N. Bartlett, Inorg. Chem., 23 (1984) 3167.
- 14 A.P. Caron und J.L. Ragle, Acta Crystallogr., B27 (1971) 1102; H. Bode und H. Clausen, Z. Anorg. Allg. Chem., 265 (1951) 229; The Merck Index, Merck & Co Inc., Rahway, NJ, 9 Aufl., 1976.

- 15 D.A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, 2. Aufl., Cambridge Univ. Press, Cambridge, 1982.
- 16 Y.M. Bosworth, R.J.H. Clark und D.M. Rippon, J. Mol. Spectrosc., 46 (1973) 240; H.H. Claassen, G.L. Goodman, J.H. Holloway und H. Selig, J. Chem. Phys., 53 (1970) 341.
- 17 P. Gowik und T. Klapötke, J. Organomet. Chem., 368 (1989) 35.
- 18 DIFABS: Walker und Stuart, Acta Crystallogr., A39 (1983) 158.
- 19 G.M. Sheldrick, SHELX886, in G.M. Sheldrick, C. Krüger und R. Goddard (Hrsg.), Crystallographic Computing, Oxford Univ. Press, Oxford, 1985; G.M. Sheldrick, SHELX76 Program for Crystal Structure Determination, University of Cambridge, Cambridge, 1976.
- 20 D.T. Cromer und J.T. Waber, International Tables for X-ray Crystallography, Vol. IV, The Kynoch Press, Birmingham, 1974.
- 21 J.A. Ibers und W.C. Hamilton, Acta Crystallogr., 17 (1964) 781.
- 22 S. Motherwell und W. Clegg, *PLUTO: Program for Plotting Molecular and Crystal Structures*, University of Cambridge, Cambridge, 1978.